Adaptive Wavelet Schwarz Methods for Nonlinear Elliptic Partial Differential Equations

ISBN
9783832540678
$68.00
Author Logos Verlag Berlin
Format Paperback
Details
  • Active Record
  • Individual Title
  • 2015
  • 202
  • Yes
  • 1
  • QC20.7.D5L45 2015
Adaptive wavelet methods have recently proven to be a very powerful instrument for the numerical treatment of nonlinear partial differential equations. In many cases, these methods can be shown to converge with an optimal rate with respect to the degrees of freedom and in linear complexity. In this thesis, we couple such algorithms with nonlinear Schwarz domain decomposition techniques. With this approach, we can develop efficient parallel adaptive wavelet Schwarz methods for a class of nonlinear problems and prove their convergence and optimality. We support the theoretical findings with instructive numerical experiments. In addition, we present how these techniques can be applied to the stationary, incompressible Navier-Stokes equation. Furthermore, we couple the adaptive wavelet Schwarz methods with a Newton-type method.