Recent Progress in Conformal Geometry

ISBN
9781860947728
$164.00
Author Bahri, Abbas
Format Trade Cloth
Details
  • 8.8" x 6.4" x 1.3"
  • Active Record
  • Individual Title
  • Books
  • 2007
  • 2007/06
  • 509
  • Yes
  • Print
  • 40
This book presents a new front of research in conformal geometry, on sign-changing Yamabe-type problems and contact form geometry in particular. New ground is broken with the establishment of a Morse lemma at infinity for sign-changing Yamabe-type problems. This family of problems, thought to be out of reach a few years ago, becomes a family of problems which can be studied: the book lays the foundation for a program of research in this direction.In contact form geometry, a cousin of symplectic geometry, the authors prove a fundamental result of compactness in a variational problem on Legrendrian curves, which allows one to define a homology associated to a contact structure and a vector field of its kernel on a three-dimensional manifold. The homology is invariant under deformation of the contact form, and can be read on a sub-Morse complex of the Morse complex of the variational problem built with the periodic orbits of the Reeb vector-field. This book introduces, therefore, a practical tool in the field, and this homology becomes computable.